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The flipping motion of a blood platelet convected under the action of a simple
shear flow over a substrate is discussed. The platelet is modelled as a rigid oblate
spheroid with aspect ratio equal to 0.25 whose axis of revolution is perpendicular
to the vorticity of the simple shear flow. The particle motion from a given initial
position is computed using a boundary element method for Stokes flow based on
the double-layer representation. When the platelet is far from the wall, the motion is
described by Jeffery’s exact solution. As the platelet approaches the wall, the rate of
rotation is reduced significantly when the platelet mid-plane is parallel to wall, and
mildly when the mid-plane is perpendicular to the wall. Comparison with laboratory
data indicates that wall effects alone do not explain the observed slow rate of rotation.
It is proposed that a distributed adhesion force imparts to the particle an effective
external force and torque at the nominal point of contact, and these slow down the
rate of rotation. The process is demonstrated by computing the motion of an adhering
platelet whose lowest point is immobilized under the action of a suitable force and
torque.

1. Introduction
Blood is a concentrated suspension of red cells, white cells, and platelets, each

having a unique constitution and serving a different function. Red cells are highly
deformable liquid capsules enclosed by a thin membrane whose resting shape is
a biconcave disk, and white cells are viscoelastic spherical particles enclosed by a
cortical spherical shell. In the unactivated state, platelets are oblate spheroids with an
average aspect ratio approximately equal to 0.25 and diameter approximately equal
to 3 µm (Frojmovic & Milton 1982; Frojmovic, Longmire & van de Ven 1990). Like
red cells, platelets lack a nucleus; like white cells, platelets exhibits a low degree of
flow-induced deformation.

Platelets adhere to injured tissue to initiate the healing process in primary
haemostasis. For a platelet to attach to the exposed subendothelium of a blood
vessel, the adhesion force must overcome the drag force due to blood flow adjacent
to the vessel wall. While the biochemical origin of the adhesion kinetics has been
well characterized (e.g. Moroi & Jung 1998; Doggett et al. 2002), the non-spherical
platelet shape has discouraged the mathematical modelling of the adhesion process
by elementary methods of particulate hydrodynamics. Following adhesion, platelets
become activated, as evidenced by a drastic change in shape, and coagulate within a
growing haemostatic plug. A network of fibrin then develops to stabilize the plug, like
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Figure 1. Schematic illustration of a platelet flipping over a surface under the action of a
simple shear flow.

steel reinforcement, leading to thrombus formation in secondary haemostasis. Under
pathological conditions, a large white thrombus consisting of platelets or red thrombus
also containing red blood cells develops and separates, possibly causing myocardial
infarction and strokes.

Platelets exhibit various degrees of adhesion to activated substrates ranging from
weak adherence that allows a continuous particle motion, including rotation and
translation, to firm adherence and permanent capture (Frenette et al. 1995; Savage,
Saldivar & Ruggeri 1996). In the laboratory, spontaneously tethered platelets moving
under the influence of a shear flow have been recently observed to exhibit a flipping
motion pivoted at a temporary adhesion point around the particle rim (Mody
et al. 2005). Though arbitrary orientations during the flipping motion are possible, in
most cases the platelet axis of revolution remains perpendicular to the vorticity of the
shear flow in a left-to-right symmetric configuration. Adhesion is typically initiated
when the particle mid-plane is inclined diagonally at the angle α � 3π/4 with respect
to the wall, as illustrated in figure 1. Following one flipping motion, a repetition may
occur or else the platelet may dislodge when the particle axis has rotated to an angle
of approximately α � π/4. Adhesion and dislodgement angles depend weakly on the
shear rate of the simple shear flow.

A natural point of departure for describing the flipping motion of a platelet over
a substrate is Jeffery’s (1922) analysis of the motion of an ellipsoid in a general
linear flow. When applied to an oblate spheroid in simple shear flow, Jeffery’s solution
predicts that the particle executes a family of periodic trajectories parametrized by the
initial inclination of the unit vector pointing along the particle axis of revolution, called
the particle director. When the axis of revolution is perpendicular to the vorticity of
the shear flow, the director rotates around the particle centroid with a time-dependent
angular velocity describing a full circle. Computations of the motion of a spheroid
near a plane wall in this configuration were conducted by Hsu & Ganatos (1994)
based on a direct boundary-integral method for large and moderate particle-to-wall
separations. In the numerical studies, freely suspended spheroidal particles convected
in simple shear flow and heavy or light spheroidal particles settling or rising in an
otherwise quiescent fluid were considered. Similar calculations were presented by
Gavze & Shapiro (1997, 1998). Pozrikidis (2005) and Mody & King (2005) recently
found that a wall in close proximity may prevent the full orbital motion and cause the
particle axis to move parallel to the wall or precess around an inclined orientation.
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Mody et al. (2005) presented a detailed laboratory study of the flipping motion
of tethered and free platelets near a plane wall, and developed a pertinent
two-dimensional hydrodynamic model. In the theory, the platelet is modelled as
a two-dimensional plate that is hinged on the wall at an adhesion point on one
end, and is free to rotate under the action of the shear flow at the other end. By
superposing the solution of Jeong & Kim (1983) for shear flow past a stationary
plate mounted at an arbitrary angle on a infinite plane wall, and the Moffatt (1964)
solution for flow in a wedge due to the rotation of one wall, and fixing the value
of an adjustable constant, Mody et al. derived an evolution equation for the plate
inclination angle for vanishing torque, and provided an estimate for the adhesion
force.

The objective of this paper is to present a more accurate model of the platelet
flipping motion, wherein the equations governing the motion of an oblate spheroid
near a wall are solved using a spectral-element method for Stokes flow based on
the double-layer representation. The results will show that wall effects alone are not
sufficient to describe the slow rotation of the platelet observed in the laboratory.
However, accounting for the effect of an adhesion torque imparted to an immobilized
particle by a distributed adhesion force reconciles theory and observation.

2. Mathematical formulation and numerical method
We consider the motion of an oblate spheroid with one axis equal to a and two axes

equal to b, where e = a/b < 1 is the particle aspect ratio. The particle may be freely
suspended or subject to a specified force and torque in a semi-infinite simple shear
flow along the x-axis above a plane wall located at y = 0. The undisturbed velocity
field prevailing in the absence of the particle is described by u∞

x = k y, u∞
y =0, u∞

z = 0,
where k is the shear rate. The Reynolds number of the flow based on the particle
size is assumed to be so small that the motion of the fluid is governed by the linear
equations of Stokes flow. In correspondence with laboratory observations of platelet
motion by Mody et al. (2005), we only consider left-to-right symmetric orientations
wherein the particle axis of revolution lies in the (x, y)-plane, as shown in figure 1.

Using the theory of hydrodynamic potentials, we express the velocity field past the
particle as a superposition of (a) the velocity corresponding to the unperturbed shear
flow, u∞, (b) a double-layer potential of Stokes flow defined over the particle surface,
and (c) the velocity due to a point force and a point torque applied at arbitrary
positions inside the particle, as

uj (x0) = u∞
j (x0) +

∫∫
Sp

qi(x) Tijk(x, x0) nk(x) dS(x) + vj (x0), (2.1)

where Sp is the particle surface, q is the vectorial strength density of the Stokes
double-layer potential represented by the integral on the right-hand side of (2.1), and
Tijk(x, x0) is the Lorentz Green’s function for the stress in a semi-infinite domain of
flow bounded by a plane wall where the velocity is required to be zero (Blake 1971;
Pozrikidis 1992). The velocity due to the point force, F, and point torque, T , is given
by

vj (x0) = − 1

8πµ
Gji(x0, X) Fi − 1

8πµ
Rji(x0, Y ) Ti, (2.2)

where Gji(x0, X) is the Lorentz Stokes-flow Green’s function for the velocity,
Rji(x0, Y ) is the rotlet representing the velocity field induced by a couplet above
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an infinite plane wall, and X , Y , are arbitrary positions inside the particle. Since
Gji(x0, x) = 0, Tijk(x, x0) = 0, and Rji(x0, x) = 0, when x0 lies on the wall, the
integral representation (2.1) satisfies the required boundary condition, u(x0) = 0, when
the field point x0 lies on the wall.

To compute the strength density of the double-layer potential, we let the field point
x0 approach the particle surface, and express the limit of the double-layer potential
in terms of the principal value, denoted by PV , finding

uj (x0) = u∞
j (x0) + 4π qj (x0) +

∫∫ PV

Sp

qi(x) Tijk(x, x0) nk(x) dS(x) + vj (x0). (2.3)

Next, we implement the rigid-body-motion boundary condition, u = V +Ω × x̂, where
V is the velocity of translation of the particle surface centroid, xc, Ω is the angular
velocity of rotation about the particle centroid, and x̂ = x − xc. Rearranging (2.3), we
derive an integral equation of the second kind for q,

qj (x0) = − 1

4π

∫∫ PV

Sp

qi(x) Tijk(x, x0) nk(x) dS(x)

+
1

4π

[
Vj + εjik Ωi x̂0k

− u∞
j (x0) − vj (x0)

]
, (2.4)

where x̂0 = x0 − xc. To complete the boundary integral formulation, we stipulate
that the translational and angular velocities of the particle can be derived from the
strength density of the double-layer potential as

V = −4π

S

∫∫
Sp

q dS, Ω =

3∑
m=1

dm ω(m), (2.5)

where S is the particle surface area, and

dm = − 4π

Am

ω(m) ·
∫∫

Sp

x̂ × q dS (2.6)

(Pozrikidis 1992, pp. 133–138). The three vectors, ω(m), are such that

v(m) =
1√
Am

ω(m) × x̂, (2.7)

for m = 1, 2, 3, represent three orthonormal modes of rigid-body rotation, that is,

(
v(q), v(s)

)
≡

∫∫
Sp

v(q) · v(s) dS = δqs, (2.8)

where δqs is Kronecker’s delta, and

Am =

∫∫
Sp

(
ω(m) × x̂

)
·
(
ω(m) × x̂

)
dS. (2.9)

In practice, the vectors ω(m) can be found using the Gram–Schmidt orthonormalization
process. Zinchenko, Rother & Davis (1997) showed that the angular velocity can be
computed directly by substituting (2.7) in (2.8), finding

ω(q)
p Ipr ω(s)

r = δqs Aq, (2.10)
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where

Ipr ≡
∫∫

Sp

(δpr |x̂|2 − x̂px̂r ) dS (2.11)

is the symmetric surface moment of the inertia tensor. Operating on the second
equation of (2.5) and using (2.10), we find

Ω · I · ω(m) = dmAm = −4π ω(m) ·
∫∫

Sp

x̂ × q dS, (2.12)

which shows that the angular velocity can be computed by solving the linear system

I · Ω = −4π

∫∫
Sp

x̂ × q dS. (2.13)

For a spherical particle of radius a, the vectors ω(m) can be identified with the unit
vectors along three Cartesian axes, yielding Am = 8

3
π a4 and

Ω = −3

2

(
4π

S

)2 ∫∫
Sp

x̂ × q dS. (2.14)

This simplified expression can also be used for a non-spherical particle with small or
moderate aspect ratio, with little effect on the performance of the numerical method.

Subject to the preceding definitions, the adjoint of the integral equation (2.4)
admits an eigensolution that is proportional to the normal vector, n. To remove this
eigenfunction and thus allow a solution by the method of successive substitutions, we
add a deflating term to the right-hand side of (2.4) and derive the modified integral
equation

qj (x0) = − 1

4π

∫∫ PV

Sp

qi(x) Tijk(x, x0) nk(x) dS(x) +
1

S nj (x0)

∫∫
Sp

q · n dS

+
1

4π

[
Vj + εjik Ωi x̂0k

− u∞
j (x0) − vj (x0)

]
, (2.15)

where the point x0 lies on the particle surface (Pozrikidis 1992, pp. 133–138). Projecting
(2.15) onto the normal vector, n(x0), integrating over the particle surface, and using
an integral identity, we find

∫ ∫
Sp

q · n dS = 0, which shows that the solution of (2.15)

also satisfies (2.3).
In the present implementation, the integral equation was solved using the spectral

boundary-element method discussed by Pozrikidis (2005) to yield the particle trans-
lational and angular velocities. Once these are available, the equations governing the
particle centroid motion and director orientation angle are integrated in time using
the Runge–Kutta method with a constant time step, k�t =0.02. In the majority of
the computations, the isoparametric quadratic expansion was used, and the particle
surface was discretized into 128 elements, as shown in figure 2(a). Each simulation
consumes approximately 4 h of CPU time on an Intel 2.0 GHz processor. To confirm
the accuracy of the results, a limited number of computations were performed with
512 elements, as shown in figure 2(b), at a computational cost of 48 h.

3. Results and discussion
A set of simulations was conducted for freely suspended oblate spheroids with

aspect ratio e = 0.25, in the absence of an adhesion force or torque. At the initial
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Figure 2. Discretization of the surface of a platelet with aspect ratio 0.25 into (a) 128 or
(b) 512 quadratic elements, each defined by six nodes.

Figure 3. Flipping motion of a platelet over a plane wall under the influence of a simple
shear flow. In the vertical orientation, the platelet is nearly in contact with the wall.

instant, the particle centre is placed at a distance d above the wall, with the particle
director lying in the (x, y)-plane perpendicular to the wall; with reference to figure 1,
χ = π/2 and α = π. When the distance, d , is much larger than the particle size, the
particle centroid is advected with the local velocity of the simple shear flow, while the
angle χ evolves according to Jeffery’s differential equation

Ωz =
dχ

dt
= −k

2

(
1 − e2 − 1

e2 + 1
cos(2χ)

)
, (3.1)

where Ωz is the particle angular velocity around the z-axis about the particle centre.
Integrating this equation by analytical methods, we find that the particle exhibits
periodic rotation with period T∞ =(2π/k) (e + 1/e). Figure 3 illustrates the particle
motion for d/b = 0.94. For this initial position, when the particle rotates and reaches
the vertical orientation, the particle rim nearly touches the wall.

Figure 4(a) shows the trajectory of the particle centre for d/b = 0.94 (solid line),
1.0, 1.1, 1.25, and 1.50 (broken lines), computed with 128 boundary elements, and
figure 4(b) shows the evolution of the minimum distance of the particle rim from the
wall. The hardly visible dotted line tracing the solid line duplicates the calculation for
d/b = 0.94 with 512 boundary elements, included to demonstrate that the numerical
error is small. In all graphs shown in figure 4, time has been shifted so that, at t =0,
the particle director is parallel to the wall and the platelet mid-plane is perpendicular
to the wall, χ = 0 and α = π/2. Figure 4(b) shows that, when d/b = 0.94, the minimum
distance is approximately 1% of the particle diameter. Because of the high curvature
of the graphs at the origin, the rim is close to the wall only for a limited period of
time that lasts a fraction of the inverse shear rate. Thus, unlike a spherical particle
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Figure 4. (a) Trajectory of the particle centre in the (x, y)-plane for d/b = 0.94 (solid line), 1.0,
1.1, 1.25, and 1.50 (dashed lines). (b, c) Evolution of the minimum distance and corresponding
streamwise position of the particle rim from the wall. (d ) Evolution of the platelet inclination
angle, α, over one period, for d/b = 0.94 (solid line), 1.0, 1.1, 1.25, 1.50 (dashed lines), and
∞ (dot-dashed outermost line). The asterisks correspond to the laboratory data of Mody
et al. (2005) for freely suspended platelets near rotating near a substrate. The hardly visible
dotted lines tracing the solid lines duplicate the calculation for d/b = 0.94 with a high number
of surface elements.

modelling a leukocyte, a freely suspended platelet strongly interacts with the wall only
when it is sufficiently close to the vertical configuration. Figure 4(c) illustrates the
evolution of the streamwise position of the lowest point of the particle rim, showing
that the nominal point of contact with the wall is nearly stationary over a limited
period of time. Accordingly, the slip velocity is small when the particle is nearly
perpendicular to the wall.

Figure 4(d) shows the evolution of the platelet inclination angle, α, defined in
figure 1, for d/b = 0.94 (solid line), 1.0, 1.1, 1.25, and 1.50 (dashed lines). The Jeffery
solution corresponding to d/b = ∞ and described by (3.1) is represented by the
outermost dot-dashed line. The results confirm that the particle motion is periodic,
and the wall has a significant influence on the period of the motion, T . For d/b = 0.94,
1.0, 1.1, 1.25, 1.50, and ∞, we find kT = 48.8, 44.2, 39.3, 35.2, 31.7, and 26.7, respectively.
Thus, when the particle is in near contact with the wall in the vertical orientation, the
period is nearly twice the Jeffery period for infinite shear flow. Net particle migration
away from the wall does not occur, in compliance with reversibility of Stokes flow.
The mean velocity of particle translation relative to that in the absence of the wall
is defined as vx = �x/(kT d), where �x is the distance that the particle centroid has
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travelled over one period. We find that, as d/b increases from 0.94 to 1.50, vx increases
from 0.93 to 0.98, and tends to unity as d/b tends to infinity. Thus, the wall has a
significant but not profound effect on the rate of particle translation.

Figure 4(d) shows that the wall has only a minor effect on the particle rate of
rotation in the vertical orientation, α � π/2. In fact, the effect of the wall is small
for all inclinations of interest to platelet adhesion, π/4 < α < 3π/4. The asterisks
in figure 4(d) correspond to the laboratory data of Mody et al. (2005) for freely
suspended platelets convected near the substrate, extracted from their figure 6. Though
the actual data exhibit a significant amount of scattering, the asterisks faithfully
reproduce the main trends. To reconcile the noticeable difference between Jeffery’s
theoretical predictions and the experimental values, Mody et al. (2005) implemented
an approximate correction to the Jeffery orbit. The correction effectively extrapolates
the slow rate of rotation observed when the platelet is parallel to the wall, χ = π/2 and
α = π, to intermediate inclinations. The correction factor is based on the resistance
coefficient for rotation of a zero-thickness circular disk calculated by Kim et al. (2001).
The present results suggest that the effect of the wall is not sufficiently strong to justify
this substantial correction and reconcile theory and observation. Thus, hydrodynamic
wall effects alone are not sufficient to explain the slow rotation of a platelet flipping
over a plane wall.

A more realistic model of the flipping motion of an adherent platelet takes into
consideration the narrowly distributed adhesion force developing between the lowest
part of the platelet and the wall. Mody et al. (2005) superposed the solution of
Jeong & Kim (1983) for shear flow past a stationary infinite plate mounted at an
arbitrary angle on a infinite plane wall, and the Moffatt (1964) solution for flow in
a wedge due to the rotation of one wall, to derive an evolution equation for the
plate inclination angle for the condition of vanishing torque. This model involves an
adjustable constant that was set to achieve the best fit with the laboratory data. The
force acting on the rotating plate has a radial component with respect to the point
of contact and an azimuthal component normal to the plate in the (x, y)-plane. The
authors assumed that receptor-ligand bonds align in the radial direction, and found
that the adhesion force is repulsive when 0 < χ < π/2, promoting bond formation,
attractive when −π/2 <χ < 0, promoting bond dissociation, and zero when χ = 0
whereupon the platelet is oriented perpendicular to the wall. However, some bonds
must be oriented in the azimuthal direction to cancel the azimuthal component of
hydrodynamic force and immobilize the lowest point of the particle rim.

An improved model can be built on the realization that a distributed adhesion
force developing near the point of contact imparts to the particle a net force of
a suitable magnitude and orientation in the (x, y)-plane, and a net torque around
the z-axis about the point of contact. The adhesion force is such that the lowest
point of the platelet rim is immobilized during the motion, while the adhesion torque
opposes the clockwise rotation. Since we have found that the hydrodynamic effect of
the wall is weak, an approximate differential equation governing the particle rotation
for angles −π/4 <χ < π/4 is Jeffery’s equation (3.1) with the adhesion term, k F(χ),
added to the right-hand side, where F(χ) is a dimensionless function expressing the
effect of the adhesion torque. Figure 5(a) shows the predictions of this model for an
idealized case where the function F is assumed to be constant. The prediction for
F � 0.4 is a good fit to the experimental data of Mody et al. (2005) represented by
the asterisks. To estimate the magnitude of the adhesion torque, Tz, we relate it to the
aforementioned dimensionless torque, F(χ), by the equation F = Tz(χ)/(6πµRzkb3),
where Rz is a dimensionless resistance coefficient for rotation. We performed a
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Figure 5. Effect of an adhesion torque applied at the point of contact on the rotation of a
platelet. (a) Modification of the Jeffery trajectory for F = 0 (solid line), 0.1, 0.2, 0.3, and 0.4
(dashed double-dot line). (b) Numerical solutions for an adhering platelet subject to adhesion
torque Tz/(µkb3) = 0 (solid line), and 2, 5, 10, 15 (dashed lines), all for d/b = 0.80; the
dot-dashed line represents the Jeffery solution in the absence of a wall, and the dotted line
is the numerical solution for zero torque and d/b = 0.85. The asterisks correspond to the
laboratory data of Mody et al. (2005).

computation using the standard boundary-integral equation for Stokes flow based
on the single-layer representation included in the public library BEMLIB (Pozrikidis
2002), and found that, in the vertical orientation, χ =0 and α = π/2, the resistance
coefficient is Rz = 2.20. An estimate for the adhesion torque can be obtained by
writing Tz/(µkb3) = 6πRzF and taking F � 0.4 according to figure 5(a), which yields
Tz/(µkb3) � 16.6. However, the results of this calculation only pertain to the conditions
and materials of the experiment corresponding to the data.

To study the motion in more precise terms and also compute the magnitude of the
adhesion force developing during the rotation, a set of simulations was carried out
where the particle director at the initial instant is inclined diagonally at the angle
χ = π/4. The x and y components of the adhesion force were computed at every
instant for the condition that the x and y velocity components of the lowest point
of the particle rim are zero, that is, the nominal contact point is stationary. For
lack of a better alternative, the adhesion torque was assumed to be constant during
the rotation. In the numerical method, the stationary-rim condition is added as a
linear constraint in the boundary integral equation discussed in § 2. The constrained
problem requires nearly four times the CPU time as the unconstrained problem in the
absence of adhesion. Figure 6 illustrates the particle rotation for initial centre-to-wall
separation d/b = 0.8, corresponding to initial particle-to-wall gap ymin/b = 0.093.
Comparing this illustration to that shown in figure 3 for a freely convected particle,
we clearly see the immobilizing effect of adhesion.

Figure 5(b) shows the effect of the adhesion torque on the particle rotation for initial
particle centre elevation d/b = 0.8. The Jeffery solution for a torque-free particle
suspended in infinite shear flow is represented by the dot-dashed line. To assess the
effect of the particle-to-wall separation, the solution for d/b = 0.85 and vanishing
torque is also shown as a dotted line. The solid, dotted, and dot-dashed curves, all
for zero torque, nearly coincide due to the demonstrated weak effect of the wall.
The prediction for adhesion torque, Tz/(µkb3) = 15, fits well the experimental data of
Mody et al. (2005) represented by the asterisks. This value of the torque is in fair
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Figure 6. Rotation of a torque-free adhering platelet around the lowest point of the rim
displayed at equal time intervals.
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Figure 7. (a) Radial and (b) azimuthal adhesion force coefficients for adhesion torque
Tz/(µkb3) = 0 (solid line), and 2, 5, 10, 15 (dashed lines), all for d/b = 0.80; the dotted
line is the numerical solution for zero torque and d/b = 0.85.

agreement with the aforementioned theoretical estimate based on the modification of
the Jeffery orbit equation with F = 0.4.

Figure 7 illustrates the radial and azimuthal components of the adhesion force
exerted on the particle, necessary to immobilize the point of rotation, for several values
of the adhesion torque. The force coefficients shown are defined as fr = Fr/(µkb2)
and fϕ = Fϕ/(µkb2). As expected from geometrical symmetry, the radial component of
the force is zero in the vertical orientation, χ = 0, whereas the azimuthal component
achieves a local maximum. For zero torque, the radial component of the force is
positive during the first part of the rotation, 0 < χ < π/4, and negative during the
second part of the rotation, −π/4 < χ < 0. Thus, the adhesion force pushes the parti-
cle away from the wall when −π/4 <χ < 0, and pulls the particle toward the wall
when 0 < χ < π/4. The two-dimensional flap model of Mody et al. (2005, figure 4)
predicts a similar behaviour, but with a substantially lower maximum radial force
fr � 0.75 × 2π =4.712 occurring when χ = −π/4, whereas we find fr � 20. The
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four-fold difference can be attributed to an adjustable parameter involved in the two-
dimensional model. As the adhesion torque is increased, the magnitude of the radial
force decreases, as the induced particle rotation tends to counterbalance the rotation
due to the simple shear flow. At high adhesion torques, the radial force becomes
negative in the first part of the rotation, 0<χ < π/4, and positive in the second part
of the rotation, −π/4 < χ < 0.

4. Discussion
Frenette et al. (1995) observed that platelets roll over the venular endothelium

with a wide range of velocities by executing a sequence flipping motions. Savage
et al. (1996) reported small migration velocities on a different substrate and stated
they were unable to discern the detailed nature of the particle motion. These studies
suggest that the strength of the adhesion forces and torque, as determined by the
biochemistry of the adhesion bonds, is an important aspect of the biophysics of
the motion. We have found that, in the absence of adhesion force and torque, the
hydrodynamic component of the platelet flipping motion can be accurately described
by Jeffery’s (1922) exact solution even in close proximity to a substrate, but the
predicted rate of rotation substantially differs from that reported by Mody et al.
(2005). Including an adhesion force and torque, and computing the force for the
condition of platelet rim adhesion, considerably improves the agreement. The motion
of an adhering platelet is successfully described by a simple modification of the Jeffery
equation involving an additional term that slows down the rate of rotation.

A comprehensive description of the individual platelet motion must involve a
molecular adhesion component. Fogelson & Guy (2004) developed a continuum
(volume averaged) model for platelet aggregation, wherein platelet–wall adhesion
forces are computed in terms of the volume concentration of reactive sites on the
wall, complemented by transport equations for the concentration of activated and
non-activated platelets in the suspension. Agresal et al. (1998) developed numerical
methods for computing the interaction of adhering suspended cells, and modelled
bond formation and breakup in terms of a reversible reaction kinetics at equilibrium.
The bonds themselves are regarded as springs with a specified equilibrium length
oriented from one adhesion site on one cell to another adhesion site on another
cell. Hodges & Jensen (2002) used a similar method to study the spreading and
peeling dynamics of a cell on a plane surface, assuming that the bonds are oriented
perpendicular to the wall. In the most sophisticated molecular adhesion models, the
equations governing the rate of bond association and dissociation involve the wall
shear rate and shear stress (e.g. Alon et al. 1997). Such molecular models have been
combined with hydrodynamics to describe the rolling of solitary white cell or a
collection of cells represented as spherical particles (Hammer & Apte 1992; King &
Hammer 2001). The implementation of such models to platelet adhesion on a substrate
is being considered in current work.
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Foundation.
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